Exercise 2 - adding waves -- due Mon. Oct 26

Draw/write on these slides.

part 1

(1) Look at the setup on the next page, a square unit cell of width $5.00 \AA$, with 2 hydrogen atoms in it. Xrays come in from the left, scatter at $2 \theta=90^{\circ}$.
(2) Measure the distance traveled from Wall A to Atom 1 (r_{1}) to Wall B, traveling along beam direction $\mathbf{s}_{0}=(1,0,0)$ and scattered wave $\mathbf{s}=(0,1,0)$, respectively. Divide by the wavelength. Multiply by 2π (or 360) to get the phase in radians (or degrees).
(3) Do the same for Atom $2\left(r_{2}\right)$. Fill in Table 1.
(4) Add the two waves in Argand space (slide 20 of this lecture). Measure the resulting length (amplitude A) and phase (α).

Exercise 2 - copy this page and draw on it - due Mon. Oct 26
Wall B the wave detector

Exercise 2 - part 2

Calculate the wave sum using the Fourier transform

$$
F(S)=\sum_{k} \varrho\left(r_{k}\right) e^{i 2 \pi S \diamond r_{k}}
$$

$$
\begin{aligned}
\lambda & =1.54 \AA \\
\mathbf{S}_{0} & =(1,0,0) \\
\mathbf{s} & =(0,1,0) \\
\mathbf{S} & =\left(\mathbf{s}-\mathbf{s}_{0}\right) / \lambda=\left(\begin{array}{l}
\square
\end{array}\right)
\end{aligned}
$$

Table 2	Measure Å coordinates of r_{k} relative to origin from previous page.	$\begin{aligned} & \mathrm{A}_{\mathrm{k}}= \\ & \mathrm{Q}\left(\mathrm{r}_{\mathrm{k}}\right) \end{aligned}$	$\begin{gathered} \alpha_{\mathrm{k}}= \\ 2 \pi S \cdot{ }_{\mathrm{r}} \end{gathered}$	$\mathrm{A}_{\mathrm{k}} \cos \left(\alpha_{\mathrm{k}}\right)$	${ }^{i} \mathrm{~A}_{\mathrm{k}} \sin \left(\alpha_{k}\right)$	
$\mathrm{k}=1$						
$\mathrm{k}=2$						
sum						
Amplitude (A) = \| (imag, real)						
phase $(\alpha)=\tan ^{-1}$ (imag/real) (in degrees)						

