Homework X. BCBP 6870. Fall 2008

due Nov 24

(1)

If you scratch a row of evenly spaced regular lines into a glass slide, each scratch will scatter all wavelengths of light in all directions. If there are enough lines and they are all separated by exactly the same distance d , then you get what is called "diffraction grating" and you see a rainbow of colors. If you have a single white light source shining on the glass slide at an angle $\theta=90.0^{\circ}$ at infinite distance, and the spacing between the lines is $2 \mu \mathrm{~m}$, at what angle(s) do you see green light ($\lambda=550 \mathrm{~nm}$)? At what angle(s) do you see red light $(\lambda=700 \mathrm{~nm})$?

Draw me a picture to illustrate the diffraction of red light.

(2)

You have a crystal of butane, $\mathrm{C}_{4} \mathrm{H}_{4}$, the dimension of the cubic unit cell are 10×10 x $10 \AA$. The coordinates ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) of the carbon atoms are as follows:

C1 (1.000, 8.000, 3.000)
C2 (2.000, 7.500, 3.500)
C3 (3.000, 7.000, 3.000)
C4 (4.000, 6.500, 3.500)

Find the phase of the reflection F with Miller indeces $\mathrm{hkl}=120$
using the Fourier transform. Show your work. Convert \AA coordinates ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) to fractional coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$). Graph the 4 scattering vectors, summed. Assume the scattering factor $\mathrm{f}=6.00$ for each carbon atom. Here is the Fourier transform:

$$
F\left(\begin{array}{lll}
h & k & l
\end{array}\right)=\sum_{r} f(r) e^{2 \pi i(h x+k y+l z)}
$$

$F(120)=$ \qquad (amplitude), \qquad (phase in degrees)

(3)

What is the upper limit coordinate error in \AA of a protein crystal structure if the resolution is $d=2.5 \AA$ and the R -factor is $\mathrm{R}=0.25$? (You may use the Luzzati plot, or you can assume the phase error $=2 \pi R / 2.3$)

