Protein Structure Determination '20 -Lecture 10

In class exercises:
Ramachandran plot
Superposition
Crystal contacts

Model Validation

Model quality metrics

- Resolution
- R-factor (free R-factor)
- Overall B-factor (approx Wilson B)
- Quality of density (holes in rings, H bumps)
- Ramachandran plot
- Rotamers
- other stereochemistry (bond lengths, angles, chirality)
- B-factors
- Rsym, completeness (measure quality of data, not of model, but related)

Ramachandran Plot matches stats of good Xray structures

Ramachandran used a physical model of dipeptides to determine the allowed (dark) and disallowed (white)combinations of phi and psi backbone angles.

The observed frequencies roughly agree with R's allowed regions.

Ramachandran & Sasisekharan (1968)

Ramachandran plot in Coot

Read in **7dfr.pdb**Validate > Ramachandran plot

- Click to identify residue
- Plot changes to match residue type
- Helps to identify outliers, poorly modeled residues
- Find a glycine.
- Find a proline.

Showing symmetry in Coot

Draw > Cell & Symmetry

Master switch: Yes

Show unit cells: Yes

Symmetry by molecule:

Display as CAs, Color by symop

Draw > Cell & Symmetry Symmetry by molecule:

Display near chain, Color by symop

trigonal space group!

Find crystal contacts

Crystal contacts are locations where atoms are close to atoms of a symmetry-related molecule. (Can be non-crystallographic symmetry)

Play a role in crystal formation.

May be distorted by the interaction energy.

Click to label atoms in crystal contact

S138, C152, F140, D142

Find crystal contacts

Draw > Cell & Symmetry Symmetry by molecule:

Display sphere, standard colors

Use controlleftmouse-drag to pan.

Superposing two molecules in Coot

Superposition

- ...requires a sequence alignment.
- ...solves for rotation/translation by least-squares

$$\frac{SUM(\underline{M}r^{a_{i}}-r^{b_{i}})^{2}}{N}$$
 ... to solve for \underline{M}

 r^{a}_{i} and r^{b}_{i} are the coordinates of the *i*th residue (more precisely, the two residues in *i*th column of a sequence alignment) of molecules **a** and **b** respectively.

Superposing two molecules in Coot

Read in **7dfr.pdb** (if not already) Read in **4m6k.pdb**

Calculate > SSM superpose select chain A for both

Display manager

CAs+Ligs SecStr Col

Later, try...

Display manager
Jones Rainbow

Comparing models

- Questions you ask when comparing two models:
 - How similar?
 - What method was used? (Xray, NMR, cryoEM, homology)
 - Where are the differences?
 - How significant are the differences?
 - What may have caused the differences?
 - Any differences in function?

metrics and factors

- RMSD
- sequence differences, insertions/deletions
- ligands
- crystal contacts
- relative model quality (see previous slide)