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Abstract 
Motivation: We present HMMSTRTM, a Hidden Markov Model (HMM) that is useful for predicting topology of trans-
membrane (TM) proteins. HMMSTRTM provides additional prediction categories of TM regions provided by the PDBTM 
corpus such as transmembrane beta sheets, coils, and reentrant loops. 
Results: HMMSTRTM is competitive with existing TM protein topology predictors like TMHMM, it correctly predicts at 
least half the residues in 96.18% of all transmembrane helices in  a cross validation dataset. 
Availability: Model architecture, source code, and supplementary figures are made available on github: github.com/Ti-
buronB/HMMSTRTM. 
Contact: bystrc@rpi.edu 
Supplementary information: Supplementary data are available at Bioinformatics online. 

1 Introduction  
Hidden Markov Models (HMMs) have an established track 

record as predictive tools of protein structure given a protein’s Amino 
Acid (AA) sequence. Following a popular tutorial of HMMs (Rabiner, 
1989), they were applied extensively in computational biology in the 
1990’s to find coding regions in DNA (Krogh, et al 1994) to predict pro-
tein secondary structure (Asai, 1993), and to describe TM protein topology 
and predict the presence of TM helices (Krogh, et al 1994). Feed-forward 
HMMs are used to predict protein sequence families or superfamilies 
(Finn, et al 2011), and are capable of detecting distant homologs and cor-
rectly aligning their sequences. 

HMMSTR, (HMMSTR2K) (Bystroff, et al 2000) stood unique 
in this field as an HMM which could be used to predict dihedral angles, 
aiding in local structure prediction. HMMSTR2K was constructed by 
aligning sequence-structure motifs from the I-sites library (Bystroff & 
Baker, 1998). Positions within the I-sites motifs that co-occurred fre-
quently in the database were merged to form hidden Markov states. A sin-
gle non-emitting state called a ‘naught state’ was added to connect all C- 
and N-terminal “dead-end” states, ensuring that the model would return a 
non-zero probability for any protein sequence. The HMM was then trained 
on a representative dataset of protein structures and AA profiles using the 
expectation maximization (EM) procedure (Rabiner, 1989). The trained 
model was able to predict protein local structure represented as backbone 
angles; correctly assigning about 69% of all 8-residue segments of all 
chains in a cross validation subset of the database and about 74% of all 3-

state secondary structure descriptors (Q3). HMMSTR2K has since been 
used to predict contact maps (Bystroff & Shao, 2002), to align remote 
homologs (Huang & Bystroff, 2006), to recognize remote homologs using 
a support vector machine (Hou, et al 2004), to recognize good Rosetta 
protein designs (Schenkelberg & Bystroff, 2015), as input to a protein un-
folding pathway prediction algorithm (Ramakrishnan, et al 2012), as a se-
quence palette for automated protein design (Huang, et al 2015), and as a 
source of probability-based force fields for C-alpha-only molecular dy-
namics (Buck & Bystroff, 2009).  

First order Markov chains are used to describe a dynamic 
world state over a time interval and are most easily understood by describ-
ing the forward algorithm. In this algorithm, the probability of being at a 
particular state j at time t is dependent on the observation of a world state 
O at time t, the probability of being in an adjacent connected state i at time 
t-1, and the transition probability between states i and j. HMMs provide 
an avenue by which unobservable world state information can be predicted 
based on a sequence of observable information. HMMs used to describe 
protein structure are not based on time, but rather a position in a sequence. 
Thus, the information which is predicted by HMMSTR at position t in a 
protein sequence will depend directly on the distribution of states reached 
at position t-1, the descriptive power of each state encountered at position 
t, and the transition probabilities of each state i at t-1 to each state j at t. 
HMMSTR’s states contain several descriptors (emissions) of sequence 
level information including: an AA profile, secondary structure categories 
provided by the program DSSP (Frishman; Argos, 1995) Ramachandran 
(backbone torsion angle) space, and transmembrane categorization pro-
vided by PDBTM (Kozma, et al 2012). 

An HMM’s predictive capability can be improved stochasti-
cally via an expectation maximization (EM) procedure. The EM procedure 
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calculates a nxt matrix, alpha, via the forward algorithm described above 
and a similar matrix, beta, which is found by traversing the states back-
wards, from state j to i where a directed transition exists i → j. The back-
ward algorithm begins at time T with equal likelihood to be at all states 
and ends at time 1. The alpha and beta matrices are then used to calculate 
other matrices, gamma and zeta, which relay the probability to be at any 
state i at position  t and the probability to transition from state i to state j 
at position t, respectively. These matrices can be used to optimize param-
eters of the model including the probability of transitions between any 
previously connected states i to j. The algorithm can remove state transi-
tions entirely, however new transitions will never be added. Analogously, 
the gamma matrix can be used to weigh state emission predictions via 
maximizing each state to describe the distribution of observations present-
ing themselves to the state across all observations in the dataset. For more 
details see Rabiner 1989.  

This paper describes the recent development of HMMSTRTM, 
a model addition to HMMSTR2K which can aid in the prediction of TM 
regions within a protein’s sequence, while also offering the local structure 
predictive capabilities of HMMSTR2K. To accomplish this, significant 
inspiration was taken from a popular HMM used to predict TM topology, 
TMHMM (Krogh, 1988).  

The topology of TMHMM was defined to mimic the biology 
of TM proteins. Contained within the model architecture exists sets of 
states which define globular components of a protein residing on the cy-
toplasmic and non-cytoplasmic sides of a membrane. Between these glob-
ular model regions are a series of connected states which are trained to 
predict transmembrane helices (TMH). Within these TMH regions is a 
single “m” state which contains all parameters necessary to determine the 
optimal length of the TMH (a value constrained between 15 and 35 resi-
dues). Five cap states flank the TMH core states. Cap states represent res-
idues which must pass between polar heads of the membrane and are as-
sociated with more polar behavior. Two TMH regions exist in TMHMM 
to create a directional pattern. One region spans the membrane from the 
inside to the outside and the other which spans from outside to inside. This 
topology proved fruitful in predicting TMH regions of sequences deter-
mined to belong to TM proteins, and since its creation has been used to 
aid in experimental Protein Structure Determination (PSD) (Tani, et al 
2021), and prediction of sequences belonging to TM proteins  (Shinzato, 
et al 2021; Gao, et al 2021). 

A mechanism used by TMHMM to preserve model generality 
and curtail overtraining is the use of ‘tied states’ within disparate regions 
of the model. Tying a set of states ensures that parameters such as the 
outgoing transition probabilities or state emissions are kept equivalent 
within this set of states (Figure 1). For instance, the states within 
TMHMM’s TMH core are B-tied, meaning that the expected distribution 
of AA’s is kept constant between all of these states. Likewise, inside cap 
states are tied together, outside cap states are tied together, and globular 
inside and outside states are tied together. This last pattern is used to main-
tain biological knowledge offered by the ‘positive inside rule’ (von 
Heijne, 1986; Jones, Taylor, & Thornton, 1994; Persson & Argos, 1994; 
Wallin & von Heijne, 1998) which states that positively charged residues 
like Arginine and Lysine are an important part of defining cytoplasmic 
globular loops of TM proteins. 

2    Methods 
HMMSTR2K Topology 

During the development of HMMSTRTM, the topology of 
HMMSTR2K underwent several alterations worth noting. 29 states from 

HMMSTR2K were identified as redundant and culled from the model 
greedily by removing states which had the lowest descriptive power across 
the database. This metric was calculated in each state by summing the EM 
variable gamma across the database.   
 A single naught state exists in the model to be used as a master 
sink for all dead end states in the model. This state ensures no flow is lost 
in the forward algorithm and the model can efficiently transition from any 
motif into any adjacent motif. The naught state is well connected, contain-
ing 52 incoming transitions and 45 outgoing transitions in the globular 
model. This state is also non-emitting, meaning it has no predictive value 

Table 1: Variable names and terms.  
T Length of sequence 

t Position in sequence 

x,  AA amino acid 

r Ramachandran (backbone angle) region 

ss secondary structure (H,E, or L) 

tm B,H,C,I,L,F, or 1 (globular),  TM-region class. 

A(i,j) probability of state j at t+1 given state i at t 

i, j The number of a state in the model 

N Total number of states in the model 

P(x|i) Probability of amino acids x given state i 

state hidden Markov state 

emission P(x|i), P(ss|i), P(r|i) or P(tm|i). 

transition A(i,j)  

naught 
state 

a non-emitting, connector state 

gamma(i,t) a posteriori probability of state i at position t 

zeta(i,j,t) a posteriori probability of transitioning from state i at 
to state j at  position t 

prior(i) the probability of starting at state i at t =1 

tying, tied states with constrained emissions  (B-tied) or transi-
tions (A-tied) 

Figure 1. Pseudocode for tied state gamma calculation 
Figure 2. Pseudocode for forward algorithm get_alpha() using 
naught states.  
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to the model other than to act as an intersection between disparate local 
structure motifs. Furthermore, this state takes no time step to traverse; 
meaning if the state is used at time t, we will have transitioned from all 
incoming states at time t-1 to all outgoing states at time t. In the backward 
algorithm the opposite is true; when the naught state is used at time t, we 
transition from all outgoing naught states at time t+1 to all incoming states 
at time t. In HMMSTR2K, the naught state has a high prior value, meaning 
it is used frequently to begin prediction, an alteration was made which 
disallows starting at the naught state, instead the model’s prior values are 
trained from the observed probability to be at each state at time t = 1. This 
parameter was initialized so that the model begins at each state with equal 
probability.  (Late in model development, an effort was made to remove 
the naught state entirely, this vastly increased parameter space and only 
led to a minor improvement in a derived metric, MDA.)  

Naught states can be connected to other naught states, this con-
dition is handled by a recursive function in the forward, backward, and 
Viterbi algorithms to allow general traversal through linked naught states 
which do not contain a cycle. Pseudocode is provided which details this 
recursive naught state traversal (Figure 2). Naught states are used in the 
HMMSTRTM model to promote a sequential relationship between enter-
ing and leaving different regions of the model. For instance, one could 
expect that the density of motifs encountered after leaving a TM spanning 
region to be different from the density of motifs encountered in a globular 

protein.  
 
 

HMMSTRTM Topology 
This section describes the methods used to create the topology 

of HMMSTRTM, the model which adds to the predictive capability of 
HMMSTR2K by accommodating prediction of local structure and TM to-
pology of membrane associated proteins.  

HMMSTRTM is built around the original HMMSTR2K topol-
ogy (Bystroff, 2000) and the PDBTM database (ref). The TM Markov 
state topologies were constructed to mimic the length distribution and se-
quence patterns of membrane associated segments of proteins. These des-
ignations include four transmembrane regions (TM-regions) which span 
the membrane in one direction and two that do not cross the membrane, 
as defined in (PDBTM reference): transmembrane beta-sheet (B), trans-
membrane coil of unknown structure (C), transmembrane helix (H), trans-
membrane low-resolution helix  (I), membrane integral re-entrant loop 
(L), and membrane interfacial helices (F). Designations are denoted TMx, 
where x={B,C,H,I,L,F}. TMF states have a route to and from the other 
TM core regions which skip traversal through cap states. Finally, the TML 
region contains transitions into and out of globular states on one side of 
the model. 

Data mining strategies, inspiration from existing TM topology 
predictors like TMHMM, and biophysical intuition were used to construct 
the TM-region topology of the HMMSTRTM model. To begin, histo-
grams of the periodicity of TM-regions were found to describe the pattern 
of the lengths of TM regions dependent on the PDBTM-designated char-
acter. Following this, an automated procedure constructed Markov chains 
which mimicked the length distribution of the TM-region. The states of 

Figure 3. Algorithmically-designed TM region topologies. This figure describes the algorithm-aided desgin of two TM region topologies, that 
of transmembrane helices (TMH) on figure left and transmembrane beta sheets (TMB) on the right. To create these topologies, parameters 
were extracted from the training database and captured by model parameters; state emissions and state transition probabilities. Via the histogram 
a), the TMH length distribution is maintained by setting outgoing transitions of a single state, m, in the helix core. By initializing state emissions 
of AA polarity across both TMH and TMB topologies in conjunction with state transition probabilities, we are able to maintain the pattern 
presence of polar, or hydrophilic, residues within these protein regions. The line plots in b) display the probability of the xth residue from the 
end of the TMH being polar. From this information, we can create a topology which maintains this feature by setting state transition probabilities 
to match what is seen in the data. In the TMH region, states have transition probabilities between layers of states which are B-tied. On odd 
layers, blue states are B-tied and maintain a non-polar AA character. On even layers, red states are B-tied and maintain a polar AA character. 
From the observation that TMB regions tend to alternate residues of hydrophilic or hydrophobic nature, states within the topology of the TMB 
region are connected via an alternating pattern of polar and nonpolar B-tied states. The TMB length distribution (c) is conserved by initializing 
outgoing transition probabilities of two m states. Another state transition controls the frequency of TMB regions which begin polar vs those 
that begin nonpolar. Flanking each topology core are TM cap states which are designed to mimic the pattern of residues which span the polar 
head region of the membrane. Following topology creation, each TM topology is trained, and states with a low cumulative gamma value are 
pruned from inclusion in the final model. 
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these regions were connected in a fashion similar to TMHMM, where a 
single state near the center of the TM region ultimately retains the decision 
for the length of the TM-region. A series of connected cap states flank the 
TM region. These cap states store patterns in sequence and structural space 
of the residues which cross over the polar head groups of the membrane. 
Before training, the states which mark the beginning of the TM region are 
populated with incoming transitions from all globular states which transi-
tion to the globular naught state, and each TM end state was given transi-
tions to each globular state which was transitioned to from the globular 
naught state. This topology feature highlights the modular nature of work-
ing with an HMM defined by local structure motifs; new features can be 
added as disconnected components from which sequential patterns be-
tween disparate local structure motifs can be revealed via EM.  

Special consideration was given to TMH and TMB regions of 
the model. These regions were constructed using an algorithm which es-
tablishes the correct consecutive length pattern of the TM region, and ap-

pended with rows of states intended to capture the pattern of hydrophilic 
residues within a TM region. See Figure 3 for details. Other TM topologies 
were created with similar features, namely a ‘m’ state which arbitrates the 
length of the TM, a B-tying pattern which maintains important sequence 
patterns, and cap states which help span the polar head group of mem-
branes. Together four TM topologies, (B,C,H, and I) are used to create a 
single, directional, TM span between separated globular components of 
HMMSTRTM, see Figure 4.   
Training Data 

HMMSTR2K used a training and test set of 691 and 54 protein 
sequences each. These datasets were pruned for distantly related protein 
sequences such that no pair of similar sequences would appear in either 
set or between each set. In the past twenty years, the rate of protein struc-
ture determination via experimental methods has followed an exponential 
curve (RCSB Protein Data Bank, 2021). To account for this, a new data-
base was cultivated from a culled set of proteins from Dunbrack 30% ID 
cutoff (Wang & Dunbrack, 2003), consisting of 3572 and 655 proteins in 
the training and test set, respectively. Another dataset containing trans-
membrane proteins was collected from the PDBTM corpus. This training 
and test set contains 4737 and 970 chains, respectively, and contains 488 
and 127 TM protein chains, respectively. Chains were grouped into pro-
tein families when any hit in a blast output was found in a different chain’s 
blast output. Chains belonging to the same protein family were weighted 
in the database inversely proportional to the number of chains in the fam-
ily. Chains in these datasets were curated similarly to the HMMSTR2K 

dataset such that no pair of similar sequences appeared in any of the da-
tasets or between corresponding training and test sets.  

While curating these datasets, several exceptions were encoun-
tered relating to sequence alignments. For instance, PDBTM will some-
times omit labeling disordered regions. Likewise, the program used to as-
sign secondary structure, DSSP, would omit assigning labels to disordered 
regions, and often mis-labels non-canonical AAs. Errors such as these 
were taken into account by generating an AA sequence alongside se-
quences for secondary structure and TM region, then performing a se-
quence alignment back to the ground trut AA (fasta) sequence. Gap char-
acters for the TM and DSSP sequences are ‘U’ and ‘-’ respectively. Char-
acters used in the Ramachandran sequence (r) originate from those used 
in HMMSTR2K using a Voronoi separation procedure of r space (By-
stroff, 2000)(Figure 5). A custom perl script was used to assign values for 
the r sequence per residue by finding the nearest center of a Voronoi cell 
in r space. In regions of disorder, a character ‘?’ was used as a gap char-
acter.  

The PDBTM corpus has several important caveats worth men-
tioning. Most notably, designated globular components of chains in 
PDBTM are labeled with the tm characters “1” or “2”. However, these 
labels are not meant to suggest any relationship between ‘intracellular’ or 
‘extracellular’. This poses an extra challenge for TM topology prediction 
since it wasn’t possible to directly train the model on any difference be-
tween intracellular or extracellular globular segments. In the final version 
of the model, these characters were collapsed into a single character “1” 
which is used to describe any globular region. The tm emissions, ‘B’, ‘H’, 
‘C’, ‘I’, ‘L’ and 'F', constitute the membrane associated regions of the 
model including B=beta, H=helix, C=coil, I=undefined transmembrane, 
L=non-crossing re-entrant loop, and ‘F’ = non-entrant interfacial helix. 

Figure 4. Abstracted topology of HMMSTRTM. This figure de-
tails the connectivity between different state regions of the 
HMMSTRTM model. Within this model are two copies of the 
HMMSTR2K model which serve as globular local structure pre-
dictors for cytoplasmic and non-cytoplasmic 
loops. A sequence belonging to a globular protein will not make 
use of TM spanning regions, and will remain within the predictive 
bounds of the cytoplasmic HMMSTR2K model. Not shown in this 
diagram are the individual topologies of each TM spanning region, 
and relatively complicated topology features such as individual 
state transitions between different TM spanning regions. For in-
stance, transitions exist between the core regions of TMB and TMI. 
 

Figure 5.  Backbone Angle Regions. This diagram shows regions 
of Ramachandran (r ) space seperated by a Voronoi clustering pro-
cedure. Areas containing popular dihedral angles are indicated by 
hotter colors. Not shown is the cis peptide region, 'c' (Bystroff, et 
al 2000). 
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"F" is a helical segment associated with the polar heads of the lipids, which 
often directly transitions into a TM-spanning region. The final PDBTM 
character, ‘U’, describes regions of unknown TM-localization, or disor-
dered regions of the protein. While training, if the model encounters a ‘U’ 
emission, any impact of the tm sequence at this time point on the forward-
backward matrices is ignored; thus we rely only on the AA profile and r 
character at these positions. During the update step, a ‘U’ emission is 
counted as a globular region: ‘1’.                                    
 
Training 

Training was performed on HMMSTR2K with the new da-
taset. Training used AA profiles and r sequences as input provided from 
the training database previously described. Training via expectation-max-
imization (Rabiner, 1989) is mathematically guaranteed to increase the 
predictive capability of the model deterministically to a local maximum. 
Training for 50 iterations on the dataset resulted in improvement of our 
metrics and derived metrics when evaluated on equivalent input. How-
ever, as most use-cases of HMMSTR will use only an AA sequence or 
profile as input, it is important to evaluate using this input configuration. 
Training on AA and r input decreases accuracy of successive iterations 
when evaluated solely on AA profile input. Many attempts were made to 
circumnavigate this training-evaluation pipeline shortcoming. An obvious 
solution to this dilemma may appear to train on AA input alone, however 
this would neglect important local structure information available to the 
model in the form of the r sequence.  

HMMSTR’s objective function for expectation-maximization 
is the probability of the training dataset given the current model, calculated 
using the forward algorithm (get_alpha in Figure 1). For each possible 
state pathway through the model, the transitions are multiplied by the 
emissions, and then the probability of all pathways are summed. The emis-
sions in our case consisted of the state-specific and position-specific  AA 
and r likelihood ratios, as shown in Eq 1.  
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where AAt and rt are the AA and r profiles, εAA and εr are the epsilon values 
described below, and q∈Q={q1,q2,...,qT} are all state pathways of length 
T, a q0 is the start/end state.. The training data set sequences are treated as 
one long sequence with requisite visits to the non-emitting start/end state 
after each C-terminal residue. The objective function O is maximized for 
the training set by iteratively setting the emissions and transitions to their 
respective expectation values, calculated using gamma and zeta values 
from the forward-backward algorithm as described in (Rabiner, 1989). 
(Eddy, 1998) have shown HMM predictions of protein structural infor-
mation can be improved greatly by providing an AA profile generated by 
Multiple Sequence Alignment (MSA) of related sequences revealed by 
BLAST (Alshul, 1991). HMMs such as this use a cumulative log-odds 
scoring convention of a given AA profile in the objective function (Bar-
rett, et al 1997). This requires establishing a null model which estimates 
the ground truth frequencies of each amino acid. To remain consistent with 
HMMSTR2K, the null model of this study used the background frequen-
cies of each amino acid as observed in our training database. Less common 
emissions per sequence category are more influential to the log-odds ratio 
returned from the function. For example, a true positive for a less common 
AA such as Tryptophan will increment the AA log-odds ratio more than a 
true positive for a common AA like Alanine. Similarly, incorrectly pre-
dicted values will decrease the log-odds ratio for the given emission. Be-
cause our AA input takes the form of a 20*t profile instead of a t length 
sequence, the boundary for what is considered a true positive and a true 
negative is controlled by the null model, and an additional hyperparameter 
epsilon (akin to a "pseudocount") which sets a constant minimum value 
for a zero probability mismatch between any observation and the ground 
truth per emission category.  

The value of epsilon is most easily interpreted as a means by 
which we can control the value of a true negative. With an epsilon of 
0.001, a ground truth r character of ‘L’ and a state with 0% ‘L’ character, 
we will return a log-odds ratio for the rama emission of -3, which is equiv-
alent to log(epsilon). This value can be customized per emission such that 
the epsilon for the AA emission can be different from that for the r emis-
sion. When the epsilon for AA is lower than that of r, then a true negative 

for AA will be more penalizing to the resulting value of the objective func-
tion than a true negative for r. Experimentation with these values was a 
balancing act and there is no known way to optimize these values for the 
task at hand. For the TM models, the epsilon for the TM emission was set 
extremely low (1e-8) so as to greatly discourage the model from mislabel-
ing TM regions as globular and vice versa.  
 
Structure Prediction 

Predictions were performed by finding the gamma matrix of 
the input sequence on the mode through the forward-backward algorithm. 
Following this, a sequence profile is constructed by weighting the emis-
sions of every state in the model per time point by the corresponding 
gamma value. Then a procedure similar to the voting procedure described 
by (Bystroff, 2000) was carried out to arrive at the final prediction se-
quence per category. Alternatively, Viterbi could be used to find the most 
optimal single path through the model which describes the input data. 
Viterbi performed worse than gamma weighted predictions which is con-
sistent with the findings of HMMSTR2K. However, Viterbi did slightly 
outperform gamma-weighting when predicting TM topology. 

Following acquisition of a model, the confusion matrices per 
emission can be ‘balanced’ by applying scalar multipliers to each charac-
ter in each prediction category. An automated procedure is performed on 
a model we wish to evaluate which balances the confusion matrices for SS 
and r emissions. This procedure optimizes a value from the resulting con-
fusion matrix, log(#actual / #predicted), to be equal to 1 for each character. 
This procedure enhanced the predictive capability of the model by limiting 
overprediction of the most common character, which is a common prob-
lem in machine learning when the distribution of emitted classes is skewed 
(Wang et al, 2019). The matrices resulting from this procedure give better 
accuracies than the unbalanced matrix, and also serve to point out flaws in 
our prediction, e.g. less common dihedral angle predictions like ‘L/l’ are 
more likely to belong to falsely predicted as ‘E/e/B/b/d’.   

TM topology prediction takes place in a post-processing algo-
rithm which assumes the probability of being in a TM-region is propor-
tional to the relative amount of flow going through states in TM-regions 
at time t. Furthermore, we make the assumption that the positively charged 
globular region effectively simulates a cytoplasmic environment, thus the 
P(INSIDE) is equal to the relative amount of flow going through these 
states at time t. Lastly, P(OUTSIDE) is equal to the relative amount of 
flow going through all other globular states in the model at time t. 

 

MDA HMMSTR2K HMMSTR2K20 HMMSTRTM 

all (test) 67.2(67.6) 67.43(68.1) 59.54(58.7) 

alpha 81.7 81.37 86.21 

beta 57.92 54.14 25.63 
al-
pha/beta 66.43 66.7 57.54 
TM 
(test) N/A N/A 70.30 (71.49) 

. 
Table 2. MDA accuracies of the trained and untrained globular 
model, HMMSTR2K and HMMSTR2K20, and the trained trans-
membrane model, HMMSTRTM. HMMSTRTM generally over-
predicts r emissions associated with helices causing the MDA ac-
curacy of the TM model to be much higher in datasets saturated 
with this secondary structure, and conversely much lower in da-
tasets saturated with Beta sheet secondary structures 
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TOPOLOGY VISUALIZATION 

HMMSTR has a complicated topology with 252 nodes that ex-
ist in connected components of 3 - 16 states which can at any point branch 
to a different connected component. The topology can be viewed by the 
program Graphviz (Koutsofios et al, 1999; Gasner & Emden, 2009) by 
plotting each state and each transition. In Figure 6, the states are color and 
shape-coordinated to match their most commonly emitted character. For 
example, states which are more likely to emit ‘H’ than any other r emis-
sion will be triangles, whereas states which emit any of the r emissions 
often associated with beta sheets will be squares. Amino acids are repre-
sented by the inner color of each state, with prolines represented as pink, 
glycines as green, nonpolar residues as gray and positively or negatively 
charged residues as red or blue, respectively. Lastly, the TM emission 
character is visualized by a border color of each state. Globular states have 
a blue border, TM helices are purple, and so on. Below is a graphviz 

diagram of the globular model, HMMSTR2K20. Graphviz visualizations 
proved a potent tool for model debugging of both HMMSTR2K20 and 
HMMSTRTM. 

3        Results 
HMMSTRTM is competitive with TMH prediction of 

TMHMM (Krogh, 1994), correctly predicting at least half of  the TM char-
acters of 96.18% of TM helices across our test set, compared to 
TMHMM’s performance of 92.28% on the same dataset. Additionally, 
HMMSTRTM predicts 85.23% of all types TM spanning regions by cor-
rectly labeling at least one residue within the region. HMMSTRTM’s 
overall accuracy for the TM emission is 98.15% across the dataset. Fig-
ures 7 and 8 show a typical case. 

The prediction results were better for alpha helical proteins 
than for predominantly beta proteins. Upon inspection of beta proteins, the 
false predictions of backbone angles were found in solvent exposed re-
gions and regions rich in indels in the MSA (Figure 9). A reason for this 
could be that exposed and evolutionarily variable segments of the protein 
are last to fold, having the least hydrophobic surface area. Surface seg-
ments are first to unfold in the unfolding pathways generated by 
GEOFOLD (Ramakrishnan, 2021) and are the locations of low phi values 
(Fowler, et al 2001). The sites of indels in general are places where local 
structural stability is not as important for folding. The hypothesis therefore 
is that many surface segments will be incorrectly predicted because they 
are not in their locally lowest energy conformation. A sequence that pre-
fers helix will be predicted as helix, but if it is a late-folding segment and 
the structural state of the late-stage folding intermediate prevents the seg-
ment from forming helix, then it will adopt a different structure. No three-
dimensional structural constraints are encoded within HMMSTRTM. 

Maximum Dihedral Angle difference (MDA) over an 8-resi-
due window is a derived metric used to determine the accuracy of our 
backbone angle emissions. If all of the predicted dihedral angles of the 8-
mer are all within 120 degrees of the ground truth value then all 8 of these 
residues are set to true. The first phi angle and last psi and omega angles 
are omitted when taking the maximum. If a given 8-mer satisfies the con-
dition of MDA it has been shown that the resulting backbone structure will 
be within 1.0Å RMSD of the actual structure (Bystroff & Baker, 1998). 
However, if even a single angle within the 8-mer falls outside of the 120 
degree boundary, the resulting predicted backbone structure could be quite 
different from the ground truth configuration, averaging 2.5Å RMSD. 
HMMSTR2K reported a MDA across a 2000 dataset of ~69%. This value 
was recalculated with the untrained model on the new training and test 

Figure 6. Graphviz topology of HMMSTR2K20. Each state in 
the model is displayed, with the most prevalent feature of 
Amino Acid and Ramachandran emissions displayed by color 
and shape. A well-connected white state near the bottom is the 
single 'naught state' of the globular model, HMMSTR2K20. 
Transitions below a cutoff value of 10% are excluded from visu-
alization. 
 

Figure 8. TM region prediction confidence on the TM protein 
6xyt.A. Regions in red mark high confidence of residue exist-
ing in a transmembrane helix, areas in blue mark high confi-
dence of a residue existing in a globular component of the 
structure. The last TMH of this chain contains hydrophilic res-
idues within the helix core, however HMMSTRTM is still able 
to reliably predict all TM Helices. 

Figure 7. TM Topology prediction of the multi-domain mem-
brane protein, 6XYT.A. Each line in this plot represents the 
probability of a different TM character. Blue represents cyto-
plasmic globular, pink is non cytoplasmic globular, purple is 
transmembrane helix, and green dictates the ground-truth po-
sitions of transmembrane helices. 
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dataset and found to be ~67%. After training, the value increased slightly 
to 67.43%. 

Confusion matrices are provided to assess the prediction accu-
racy for residues of each of the Ramachandran  regions r (Table 3) and to 
demonstrate the balance between false positives and false nega-
tives.  These matrices were calculated across our training and test set to 
reveal the extent to which the model is overtrained, and help dispel model 
biases. The most common character per emission category tends to be 
overpredicted across both datasets, even following confusion matrix re-
weighting. Another metric assessed model confidence by collecting an 
ROC value for TM predictions. This value is .714 for the training set and 
.703 for the test set. Table 4 presents a direct comparison between 
HMMSTRTM and TMHMM in prediction of TM helix.             
 

4    Discussion 
This study describes the development progress of HMMSTR, 

a software package which aims to predict the local structure of proteins 
using sequence motif patterns in the form of a hidden markov model . The 
new version, HMMSTRTM, also predicts membrane-associated segments 
of six types: transmembrane alpha helix (H), transmembrane beta sheet 
(B), transmembrane segment (low-resolution) (I), transmembrane coil 
(structure unknown) (C), re-entrant integral membrane loops that do not 
cross the membrane (L), and interfacial segments that sit on, but do not 
enter, the membrane (F).  The new topology blends several existing meth-
ods into a single model and highlights the modular nature of Markov 
Chains.  

Rational design of TM state modules 
Great care was taken to ensure the new topology aligned with 

existing biophysical knowledge of how TM proteins fold and become in-
tegrated within a membrane.  For example, some trans-membrane helices 
contain polar side chains, which can occur anywhere in the TM helix but 
are never adjacent, and TMH are always predominantly non-polar. There-
fore a state topology was constructed that allows isolated polar residues to 
occur in a predominantly nonpolar sequence segment. This TMH module 

captures most membrane-spanning helices and excludes globular helical 
segments.  

Similarly, TMB regions are observed to have alternating polar 
and non-polar side chains reflecting the inside and outside of the beta bar-
rel, respectively. But there are two ways to achieve this, one starting with 
the polar and the other starting with the non-polar residue. A module that 

Table 3. Confusion matrices of trained HMMSTRTM model.This 
table presents the prediction accuracy of HMMSTRTM on the 
testing database. Confusion matrices for Secondary Structure (SS) 
and Ramachandran (RAMA, r) emissions were balanced post-hoc 
such that the sum of each row roughly equals the sum of the cor-
responding column. Columns of these matrices represent the pre-
diction provided by HMMSTRTM, rows are the ground truth. A 
small confusion matrix in the top right summarizes the Trans-
membrane prediction accuracy. Prediction accuracies and the 
value of a derived metric, MDA is provided on the left of the table. 
 

Figure 9. Results of MDA mask on two proteins, PDB IDs: 4h87 and 6u66. These proteins are both primarily comprised of the Beta-Sheet sec-
ondary structure. The backbone ribbon structures presented are color coordinated such that red areas were assigned a true value for their MDA 
mask and blue areas are false. As was common among beta proteins, areas which were commonly assigned false MDA values were those which 
were likely to be late-folding intermediates of the protein; lacking local sequence support for their local conformation. Below each structure are 
three sequences relating to the respective protein's true r sequence (RAMA), the predicted r sequence, and the boolean sequence resulting from 
the MDA masking protocol (Bystroff, 2000). 
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allows either polar or nonpolar to start the TMB segment without loss of 
the strict sequence pattern was constructed and trained against the data-
base, finding that 80% of TMB start with the non-polar residue and 20% 
with the polar residue.  

Unfortunately, unlike the TMH model, the TMB  bears some 
similarity with portions of the globular model HMMSTR2K20 and there-
fore produces more false predictions of TMB in sequences that should 
have been globular beta. The reasons for this may be difficult to remedy, 
since HMMs are inherently local in their modeling ability. The sequence 
signals that determine whether a beta sheet protein integrates into the lipid 
bilayer or not are largely non-local in sequence and involve chaperone 
proteins such as BAM and TAM in the gram negative bacterial outer mem-
brane (Ranava, et al 2018).  

Reducing model complexity using naught states and tying. 
The power of modeling using HMMs is enhanced by the inher-

ent ability of this method to be modular. Using naught states and tying 
were ways to take advantage of HMM modularity while maintaining a low 
parameters-to-data ratio, as follows.  

The addition of a large number of Markov states to a model 
could potentially lead to overfitting, but techniques were employed here 
to avoid that pitfall. Specifically, the emission profiles of states were "tied" 
such that the tied states were updated as a group during EM training. Tying 
in this way was justified as a model constraint on a case-by-case basis. For 
the TMH and TMB modules, it was assumed that all transmembrane non-
polar positions would have the same intrinsic amino acid preferences, and 
also that the polar positions would all have the same preferences. This as-
sumption is based on the known interactions of the non-polar side chains 
with the lipids, which is expected to be position independent.  

The HMMSTR2K20 module was duplicated in HMMSTRTM, 
and this doubled the number of parameters, but the equivalent states in the 
two models were not tied to reduce the parameter space. By not tying the 
states, we allowed the model to find sequence pattern differences between 
cytoplasmic and extracellular globular domains if they exist. There is not 
clear signal for such differences. But a test for overfitting was performed 
and the model was found to be not overfit to the training data. Specifically, 
we determined the accuracy of prediction using the MDA metric on an 
independent, randomly selected subset of the database which was not used 
during the EM training, and found that the accuracy was not lower, as it 
would be if overfitting was happening.  

Naught states are non-emitting states that can be used to con-
nect groups of states to other groups. In (Bystroff 2000) a single naught 
state was used to connect all state sinks to all state sources to assure that 
the model contained no dead-end states. In HMMSTRTM, naught states 
were used to connect modules,  decreasing the total number of variable 
state-state transitions from m*n for directly connect modules to m+n for 
naught state-connected modules, where m is the number of sinks and n is 
the number of sources. In our experiments, using naught states in this way 
improved the runtime, an added benefit.  

Uses of HMMSTRTM 
This work is part of several efforts in protein structural bioin-

formatics in the Bystroff lab, and could be useful for any application that 
needs to assign local structural information to a sequence of unknown 
structure. We have used HMMSTR2K for several purposes as mentioned 
in the Introduction. HMMSTRTM will similarly contribute to the applica-
tions mentioned. For HMMSUM (Huang & Bystroff, 2006), the new 
model will provide position-specific amino acid substitution matrices for 

better remote homolog detection, which will now help identify remote 
homolog transmembrane proteins. TM regions are expected to have their 
own specific substitution preferences. For CALF (Buck & Bystroff, 2009), 
the molecular dynamics program that acts on a minimalist representation 
protein model, the HMMSTRTM predictions combined with known struc-
tures will provide state-dependent, 3D probability fields which will now 
capture the way TM regions pack in the membrane. For GEOFOLD (Ra-
makrishnan, et al 2012), the new model will provide assignments of TM 
regions which will allow us to develop new unfolding moves for those 
regions, resulting in folding pathways for membrane proteins.  
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